Archivo de la etiqueta: solar thermal energy in latin america

Hidráulica Solar

La hidráulica es la rama de la física que estudia la mecánica de los líquidos y se divide en hidrostática (líquidos en reposo) e hidrodinámica (líquidos en movimiento).

Se llama densidad d de un cuerpo al cociente entre su masa m y su volumen V:

d = m / V

El peso específico pe es el cociente entre el peso (= m . g) y el volumen:

pe = m . g / V

Los fluidos (líquidos y gases) ejercen siempre una presión pr en todas las direcciones.

La presión es el cociente entre una fuerza f (la ejercida por el fluido) y el área de la superficie sobre la que actúa esta fuerza S:

pr = f / S

La unidad de presión en el SI es el Newton dividido por el m2 (N / m2) y recibe el nombre de pascal.

La presión ejercida por la gravedad y las fuerzas que tienden a comprimir los fluidos se llama presión estática.

La presión derivada del movimiento de un fluido se llama presión dinámica.

Conociendo la densidad o el peso específico de un fluido podemos hallar la presión estática debida a la gravedad a cualquier profundidad h a partir de cualquiera de las siguientes 2 fórmulas:

pr = d . g . h

pr = pe . h

Resultado de imagen de presión estática en líquidos

La diferencia de presión será igual a la diferencia de profundidades h entre 2 puntos o distancia vertical entre ellos.

Una típica presión estática, es la presión atmosférica, producida en todas direcciones sobre los cuerpos colocados en la superficie de la tierra debido a la gran columna de aire sobre ellos. El resultado de esta acción en todas direcciones de la presión atmosférica no produce fuerza neta de empuje del cuerpo hacia algún lado, solo tiende a comprimirlo.

En el caso de un recipiente, la presión atmosférica actúa por dentro y por fuera y por lo tanto sus acciones se anulan entre sí.

A nosotros nos interesa conocer el exceso de presión sobre la presión atmosférica que pueda haber en el interior del recipiente (depósitos o tuberías) a través de aparatos de medición (manómetros).

Si en un recipiente el aire puede entrar y salir libremente a través del borde de la tapa, la superficie del líquido estará únicamente sometida a la presión atmosférica. Se trata de un depósito abierto o no presurizado.

Si midiéramos con un manómetro la presión a diferentes alturas en el depósito, será igual a cero en la superficie y máxima en el fondo.

Si ahora el recipiente está herméticamente cerrado y sometido a una presión adicional p, transmitida a través de las tuberías que lo comunican con la red de distribución; la medición será igual a la anterior pero incrementada en el valor de p. Generalmente la pequeña diferencia de presión originada en la diferencia de alturas es despreciable frente a la presión general del circuito p.

El teorema de Arquímedes permite conocer el peso de un cuerpo cuando se encuentra sumergido en un líquido.

Este teorema también puede aplicarse a una porción del mismo líquido.

Supongamos que una porción del líquido sufriera un ligero aumento de temperatura con respecto a otras partes del mismo.

Los cuerpos se dilatan al aumentar su temperatura y al aumentar de volumen su densidad disminuye ya que la masa permanece invariable.

Resultado de imagen de presión estática en líquidos

Si d1 es la nueva densidad de la porción considerada (d1 < d):

Peso de la porción de líquido: p = m . g = V1 . d1 . g

Empuje que actúa sobre la porción de líquido: E = V1 . d . g

Donde V1 es el volumen de la porción de líquido

Resultado de imagen de termosifón

Estas son las llamadas corrientes de convección naturales de los fluidos, en las que las partes calientes de los mismos tienden a ascender. En este fenómeno se basan los sistemas de circulación natural o termosifón para el aporte de agua caliente mediante colectores solares.

Este contenido forma parte del eBook «Introducción a la Energía Solar» y del e-learning solar de Sopelia.

Solar Térmica Ecuador

En la mayor parte del territorio ecuatoriano, en lo que a aplicaciones de agua caliente sanitaria se refiere, el tipo de colector solar recomendable es el plano.

Los niveles de radiación solar y las condiciones atmosféricas permiten a este tipo de colector brindar óptimos rendimientos y a la instalación minimizar el riesgo de sobrecalentamiento.

Solo en las zonas de montaña, donde las condiciones ambientales son más rigurosas, es recomendable la utilización de colectores de tubo de vacío evacuado, U-pipe o heat pipe.

Resultado de imagen de energía solar térmica en Ecuador

El país cuenta con atlas de recursos solar y eólico elaborados por el CONELEC y MEER respectivamente. Sin embargo ambos están basados en imágenes satelitales, no han podido ser validados con mediciones de campo y su resolución no es alta.

A raíz de esto el INER elaboró un proyecto que consistió en la instalación de 17 estaciones meteorológicas en el cantón Cuenca y 10 estaciones meteorológicas en la provincia de Chimborazo, además de la colocación de sensores para repotenciar estaciones meteorológicas existentes en la provincia de Chimborazo.

Con los datos obtenidos se han aplicado métodos de estimación de radiación solar para completar series de datos históricos. Hasta el momento se han elaborado los mapas de recursos solares preliminares.

Este proyecto busca validar información acerca del recurso solar en el país y el adecuado aprovechamiento del sol como recurso para suministro de energía.

Un Programa de la Alianza en Energía y Ambiente con la Región Andina junto con el Instituto Interamericano de Cooperación para la Agricultura llevó agua caliente solar al Páramo ecuatoriano.

El Páramo ecuatoriano comprende las comunidades de Cotopaxi, Chimborazo y Bolívar, ubicadas a más de 3.800 m sobre el nivel del mar.

El proyecto en principio se centró en escuelas y centros comunitarios para extender luego a todos los habitantes el uso del agua caliente sanitaria solar.

Se realizaron talleres relacionados con la instalación, uso y mantenimiento de sistemas solares térmicos a cargo del Fondo Ecuatoriano Populorum Progressio (FEPP).

El Programa también buscó que los participantes generen ingresos económicos por instalación, reparación y mantenimiento de equipos. Se logró capacitar a 54 personas, entre ellas 19 mujeres.

Se instalaron 44 sistemas en 42 centros educativos, beneficiando directamente a 2.186 niños y 2.206 niñas, además de a un centro al cual asisten 32 adultos mayores. En una planta agroindustrial comunitaria donde se procesan plantas medicinales pudo reducirse el consumo de gas licuado de petróleo (GLP).

Resultado de imagen de energía solar térmica en Ecuador

En otra iniciativa, el MEER y el MIDUVI entregaron colectores solares a la población.

A escala nacional son 2.632 las viviendas beneficiadas con la instalación de estos colectores otorgados a las viviendas financiadas por el bono de la vivienda a través del MIDUVI.

La adjudicación se realizó luego de un proceso de selección de las familias con vivienda idónea para la instalación de los colectores solares, que debían poseer conexión de agua potable y techo de losa.

En caso de que no exista la radiación solar necesaria para cubrir la demanda del tanque de agua, existe un sistema auxiliar a base a energía eléctrica.

El costo que tiene en el mercado un sistema de calentamiento de agua por colectores solares térmicos todavía es muy elevado en Ecuador en comparación con los sistemas que funcionan a partir de energías fósiles.

Teniendo en cuenta los niveles de radiación con los que cuenta el país, además de estas iniciativas aisladas, sería inteligente desarrollar políticas para la utilización masiva de sistemas solares térmicos.

Energía solar con Sopelia.

10 Semanas Solares Térmicas

Este cronograma representa la dosificación recomendada de dedicación para una correcta asimilación de conocimientos durante el curso e-learning de Técnico – Comercial en Energía Solar Térmica impartido por Sopelia.

Puedes recibir esta formación íntegramente desde tu computadora, smartphone o dispositivo móvil.

Supone dedicar entre 1 y 2 horas diarias entre lunes y viernes de cada semana.

2016-08-29 (1)

* Semana 1: Introducción a la Energía Solar
1.1) El futuro de la energía solar
1.2) El Sol
1.3) Nociones básicas de Física

* Semana 2: Introducción a la Energía Solar
1.4) Nociones básicas de Electricidad
1.5) Nociones básicas de Energía
1.6) Energía del sol
1.7) Tablas
– Resolución Test 1 y 2 y Ejercicio 1

* Semana 3: Energía Solar Térmica – Equipos
2.1.1) Colectores
2.1.2) Sujeción y anclaje

* Semana 4: Energía Solar Térmica – Equipos
2.1.3) Fluido caloportador
2.1.4) Protección de la instalación

* Semana 5: Energía Solar Térmica – Equipos
2.1.5) Tuberías
2.1.6) Tanques acumuladores
2.1.7) Intercambiadores

* Semana 6: Energía Solar Térmica – Equipos
2.1.8) Grupos de bombeo
2.1.9) Aislamiento
2.1.10) Otros componentes
– Resolución Test 3 y Ejercicio 2

* Semana 7: Energía Solar Térmica – Instalaciones
2.2.1) Principios básicos
2.2.2) Diseño
2.2.3) Regulación

* Semana 8: Energía Solar Térmica – Instalaciones
2.2.4) Proyecto de un sistema de ACS
2.2.5) Cálculo de la superficie colectora
2.2.6) Cálculo de los demás elementos de la instalación

* Semana 9: Energía Solar Térmica – Instalaciones
2.2.7) Presentación de un proyecto
2.2.8) Otras aplicaciones
2.2.9) Ejecución y mantenimiento de la instalación

* Semana 10: Energía Solar Térmica – Instalaciones
– Resolución Test 4 y 5 y Trabajo Práctico final

2016-08-29

Se trata de la formación en Energía Solar con la mejor relación calidad-precio del mercado.

Puede recibirse donde quiera que estés.

Solamente se necesita una computadora, smartphone o dispositivo móvil y conexión a Internet.

Por tratarse de la 1era edición hay un 50% de descuento sobre el PVP.

Esta acción de formación brinda capacitación técnico – comercial en aplicaciones domésticas de energía solar con el objetivo de difundir la tecnología y desarrollar recursos humanos para su incorporación al mundo laboral y empresarial.

La edición 2016 comienza el día 19 de septiembre y finaliza el día 25 de noviembre.

El plazo de inscripción es hasta el día 16 de septiembre inclusive en www.energiasrenovables.lat

Ya no tienes excusas, energía solar donde quiera que estés con Sopelia.

Energía Solar Pasiva

Una de las cuestiones más importantes en temas de ahorro de energía y aprovechamiento de energía solar es sin duda su aplicación en la climatización de viviendas y lugares de trabajo.

Este sector representa aproximadamente el 40% del total de la energía consumida por el hombre. El ahorro que puede conseguirse aprovechando la energía solar para la calefacción es del orden del 60 al 80% según sea el diseño de la casa.

Los principios de la arquitectura bioclimática deberían aplicarse en todos los nuevos planes urbanísticos.

Cuando se habla de arquitectura solar pasiva, se habla del modelado, selección y uso de tecnología solar pasiva, que sea capaz de mantener el entorno de una vivienda a una temperatura confortable y agradable, a través del sol. Hay que destacar que este tipo de arquitectura es únicamente una pequeña parte del diseño de edificios energéticamente eficientes y es considerada como parte del diseño sostenible.

Resultado de imagen de energía solar pasiva

Existen tres tipos de ganancia solar:

1) La ganancia solar directa: se refiere a la utilización de ventanas, claraboyas y persianas para controlar la cantidad de radiación solar directa que llega al interior de una vivienda, en combinación con suelos de gran masa.

2) La ganancia solar indirecta: se consigue por medio de la piel del edificio, diseñada con determinada masa térmica. Un ejemplo de esta ganancia es también la cubierta ajardinada.

3) La ganancia solar aislada: es el proceso en el que lo principal es la captura pasiva del calor del sol, para después ser transportado dentro o fuera de la vivienda.

Hay consideraciones a tener en cuenta en la ejecución de este tipo de arquitectura, para que dé su mejor resultado:

* La orientación de la construcción

* Características de la construcción

* Uso del entorno

Resultado de imagen de energía solar pasiva

En las edificaciones existentes siempre se puede intervenir para mejorar el aislamiento térmico, abrir persianas al sol de invierno o añadir una galería acristalada en la fachada norte de la casa si nos localizamos en el hemisferio sur.

Para que la casa pueda calentarse con el sol en invierno se necesita una fachada norte despejada, sin muchos vecinos que tapen el sol del mediodía.

Los acristalamientos principales deben estar en esta fachada norte. Por ejemplo, si nos localizamos en la mitad sur de Argentina necesitamos de 1,4 a 2 m2 de vidrio al norte por cada 10 m2 de estancia que queramos calentar.

Es conveniente cerrar por la noche con cortinas o persianas los ventanales para que no se escape el calor captado.

Es bueno mejorar el aislamiento térmico en la medida de lo posible y tener masa térmica (material de construcción en muros, forjados) que acumulen el calor del día para la noche. Para el verano es necesario colocar aleros, toldos, parras, etc. que sombreen las ventanas.

Puedes acceder a más contenidos de este tipo en el Manual Técnico – Comercial de Energía Solar Térmica de Sopelia.

Cuál es el mejor colector solar?

Qué cualidades se deben tener en cuenta al seleccionar un colector solar térmico?

Son dos:

1- Sus cualidades constructivas. Determina la durabilidad y la posibilidad de integración arquitectónica.

2- Sus cualidades energéticas. Determina la rentabilidad económica.

En algunos aspectos ambas cualidades se interrelacionan.

Un buen colector solar es aquél que posee ambas cualidades bien equilibradas para la aplicación deseada.

De nada sirve un colector solar con un aporte energético extraordinario si fallan sus cualidades constructivas, degradándose con rapidez, ya que la rentabilidad de estas instalaciones se mide a medio plazo.

De nada sirve un colector solar con unas cualidades constructivas extraordinarias si fallan sus cualidades energéticas, ya que, simplemente, no está cumpliendo con su cometido principal.

Al observar la curva de rendimiento de un colector solar, vemos que el mismo depende de una variable que es la temperatura T, la cual a su vez depende de la variable radiación solar I, de la variable temperatura de entrada Te del fluido al colector solar y de la variable temperatura ambiente Ta.

Es decir, el rendimiento de un colector depende:

– por un lado de las condiciones climatológicas, dadas por I y por Ta,

– por otro lado de las condiciones de trabajo, es decir, de para qué se usen, dada por Te.

Por ello, al seleccionar un colector hay que considerar:

1) La aplicación que va a tener (solo ACS, solo calefacción, ACS y calefacción, climatización de piscinas, etc.).

2) Las condiciones climáticas y de radiación de la localización de la instalación.

3) Las curvas de rendimiento de los modelos.

4) El precio del equipo.

5) La rentabilidad económica (en base puramente a la relación entre precio y rendimiento) y el plazo de recupero de la inversión.

6) Su calidad constructiva.

Es necesario equilibrar calidad constructiva con calidad energética.

Existe un debate abierto entre los profesionales sobre cuál de las dos tecnologías de colectores más utilizadas es la más adecuada: colector plano o de tubo de vacío ?

Los que optan por los colectores de tubo de vacío los consideran más avanzados y sostienen que en el futuro esta tecnología terminará por desplazar definitivamente a los colectores planos debido a su mejor rendimiento.

La brecha del mayor costo de los colectores de tubo de vacío con respecto a los planos se ha ido reduciendo y ya podemos encontrar colectores de ambas tecnologías al mismo precio.

Los partidarios de los colectores de tubo de vacío consideran que optar por ellos se compensa, ya que al ofrecer un mayor rendimiento por m2 será necesario adquirir menos colectores.

Esto no es necesariamente así, sobre todo en las pequeñas instalaciones:

En una pequeña instalación que solo aporta a ACS con condiciones climáticas y de radiación buenas, será mayor el rendimiento y la rentabilidad de los colectores planos.

A medida que aumenta el tamaño de la instalación, el mayor rendimiento del colector de tubo de vacío compensará la menor superficie absorbedora.

Hay que tener también en cuenta la facilidad de integración en edificios de los colectores de vacío de flujo directo (U-Pipe) que se pueden colocar en vertical cubriendo una fachada o balcón.

En definitiva, un profesional adecuadamente formado debe valorar atendiendo a los siguientes factores la elección de una u otra tecnología:

• Los requerimientos específicos de la instalación

• La climatología del lugar en cada estación del año

• Su experiencia previa

• La disponibilidad de presupuesto.

Puedes encontrar contenidos como este en el Manual Técnico – Comercial de Energía Solar Térmica de Sopelia

Solar Térmica Cuba

La población cubana destina entre 529 y 791 GWh/año (un 6% de la energía eléctrica) al calentamiento de agua.

Considerando el estado técnico de las viviendas y la estabilidad del servicio de agua, 1 millón de familias cubanas podrían recibir el servicio de agua caliente empleando energía solar térmica.

El primer anuncio escrito en lengua española sobre tecnología solar térmica comercial, publicado en un medio de difusión masiva, se realizó en un periódico cubano en la década de 1930.

Los equipos introducidos en aquella época procedían principalmente de EEUU y su elevado costo hizo que solo estuviesen al alcance de las clases económicamente más favorecidas del país.

En 1978 se creó un polígono para evaluar equipos solares térmicos y en 1987 se aprobó la Norma Cubana para la instalación de estos sistemas.

En ese período se desarrollaron los primeros modelos adaptados a las condiciones climáticas de la isla y en 1979 se obtuvo la patente cubana de un equipo solar térmico compacto.

Entre 1982 y 1991 se construyeron e instalaron más de 13.000 sistemas solares térmicos de calentamiento de agua en círculos infantiles y otras entidades sociales. La mayoría de estos sistemas están hoy fuera de servicio por problemas tecnológicos y de mantenimiento.

De 1992 a 2006 se instalaron alrededor de 4.000 colectores planos y equipos compactos, muchos de estos importados, y se realizaron esfuerzos para fabricarlos en el país.

En 2007 se adquirieron equipos de tubo de vacío a la República Popular China con el propósito de realizar una prueba piloto.

Aproximadamente el 85% de la capacidad instalada corresponde al sector turístico hotelero.

También se utilizan equipos solares térmicos para aplicaciones como el secado de productos agrícolas e industriales.

Los centros de investigación en energía solar llevan más de 2 décadas trabajando en el desarrollo de modelos y tecnologías de secado solar para maderas, plantas medicinales, granos, semillas y otros productos que ya permiten el uso industrial de estas cámaras proporcionando un gran beneficio económico.

Se ha logrado también el desarrollo de secadores solares con tecnologías muy avanzadas para el curado y secado de tabaco.

Los mencionados centros también trabajan en la utilización de energía solar en cámaras de clima controlado para la producción de vegetales y semillas de alta calidad, la refrigeración y la climatización. La investigación se centra en la producción de patatas, tomates y otros productos que actualmente Cuba se ve obligada a importar.

Proyectos y negocios de energía solar en Cuba y Latam con Sopelia

Creatividad Solar

Cuando Federico Redin atendió la llamada telefónica en su oficina de Bahía Blanca (Argentina) se puso contento porque era para solicitar sus servicios de instalación en un nuevo proyecto de energía solar.

Pero cuando llegó a la vivienda dónde se localizaría el proyecto, se dio cuenta de que la instalación tenía cierta complejidad.

Se trataba de una piscina interior de uso continuo con baño, vestuario y cocina.

La piscina estaba cerrada de manera rústica con paredes de ladrillo macizo, aberturas de aluminio con DVH de baja calidad en el cerramiento y techo de policarbonato transparente. Todo un desafío.

Piscina

Luego de la visita, quedó dando vueltas en su cabeza qué solución adoptar para configurar la instalación de manera óptima.

Apelando a la creatividad característica de los argentinos, Federico adoptó una solución poco convencional: climatizar la piscina mediante suelo radiante (tanto en las zonas de tránsito del recinto como en el vaso de la piscina misma).

De esta forma se lograría climatizar la piscina independientemente del tipo de agua que contenga el vaso y de una forma más eficiente, dado que la climatización convencional de piscinas tiene la inercia negativa del agua en movimiento.

Al calentar el agua de la piscina con una caldera convencional se pone en movimiento el agua con la misma bomba de la piscina, provocando el enfriamiento de ésta por dicho movimiento; lo que disminuye el rendimiento global de la instalación. Por ello se necesita una fuente de energía más potente y con más reacción térmica.

Sabemos que utilizando energía solar no contamos con una gran reacción térmica, es decir, que el tiempo de calentamiento es más lento.

Al climatizar la piscina con suelo radiante, el agua se caliente a través del hormigón, que una vez en régimen posee más inercia térmica y permite a la energía solar mantener ese régimen.

El “vaso” radiante de la piscina y el suelo de la zona de tránsito del recinto reciben aporte de una caldera de gas convencional que se encarga de poner en régimen la instalación y de 7 colectores heat pipe que proveen directamente al circuito (sin intercambiador) de fluido caloportador que transfiere calor en horas de sol.

Colectores I

La temperatura es regulada con una válvula termostática mezcladora para no degradar el suelo con altas temperaturas.

El sistema cuenta con un termostato ambiente para las zonas de tránsito y un termostato para el agua de la piscina.

Luego se discrimina la temperatura del ambiente o del agua con cabezales eléctricos ubicados en el colector del suelo radiante, que separan la parte del vaso de la piscina y de las zonas de tránsito del recinto.

La piscina tiene un sistema de cloración natural por sal (agua salada al 5%) lo que permite evitar el uso de cloro.

Caldera

Al haber 2 circuitos independientes (el del vaso de la piscina y el del suelo radiante), protegemos a la caldera de calentar agua salada, lo que en poco tiempo causaría daños severos e irreversibles en la misma.

Federico Redin es asesor experto en instalaciones en Sopelia.

Solar Térmica Costa Rica

A mediados de 2015 se desarrolló en San José, Costa Rica un evento internacional para reunir expertos de diferentes países del mundo para que compartan experiencias sobre la tecnología solar térmica desarrollada en sus zonas.

El foro fue organizado conjuntamente por la Agencia Internacional de Energías Renovables (IRENA), la Organización Latinoamericana de Energía (OLADE), el Instituto Costarricense de Electricidad (ICE) y el Instituto Nacional de Metrología de Alemania (PTB), tuvo como objetivo reunir expertos para apoyar la implementación de los mecanismos de garantía de la calidad a fin de aumentar la confianza en la tecnología y estimular el desarrollo.

Se abordaron temas sobre el control de productos, instalaciones e instaladores y se realizó una visita al laboratorio de energía solar y a las instalaciones de eficiencia energética del Instituto Costarricense de la Energía.

Las normas técnicas más importantes del sector en Costa Rica son:

* INTE 28-03-01/2013. Sistemas solares térmicos y componentes. Colectores solares. Requisitos generales

* INTE 28-03-02/2013 Sistemas solares térmicos y sus componentes. Sistemas prefabricados. Requisitos generales

* INTE ISO 9459-2/2013 Energía solar. Sistemas de calentamiento de agua sanitaria. Métodos de ensayo exteriores para la caracterización y predicción del rendimiento anual de los sistemas solares.

En Costa Rica, el 41,3% de los hogares utilizan sistemas de agua caliente sanitaria (ACS), que en su gran mayoría funcionan a partir de energía eléctrica.

Estos sistemas representan a escala nacional un consumo aproximado de más de 250 GWh/año.

Es muy notoria la necesidad de establecer una serie de políticas e incentivos con el fin de lograr una masificación del uso de la tecnología solar térmica en el sector residencial.

Estas deberían comprender una estrategia de implantación de la tecnología, cubriendo aspectos de reglamentación, capacitación técnica y creación de leyes que regulen el sector.

El objetivo sería crear un marco que permita introducir los sistemas solares térmicos para sustituir los equipos eléctricos de calentamiento de agua.

En el país existen aproximadamente 1.200.000 viviendas, para unos 4.500.000 habitantes (3,75 personas / hogar), de las que únicamente un 3% son viviendas multifamiliares.

De lo anterior se desprende que el sistema de ACS promedio para el sector residencial de Costa Rica consiste en un equipo básico, que con los niveles de radiación del país, se amortizaría en un plazo más que razonable.

Una de las instalaciones más importantes se encuentra en un hotel localizado en Tamarindo (Guanacaste).

Un total de 164 colectores (330 m²) y 25.000 lts de almacenamiento aportan agua caliente a 240 habitaciones y a una lavandería industrial, generando 529.600 kWh anuales.

La inversión se recuperará en solo 36 meses con el ahorro generado.

Solar Térmica Colombia

El primer antecedente acerca del uso de la energía solar térmica en Colombia se remonta a los años 50 con la instalación de equipos en las viviendas de los trabajadores de las bananeras localizadas en Santa Marta. Equipos que aún existen, pero que no funcionan.

En los años 60 se instalaron equipos solares térmicos de origen israelí en algunas universidades de Santander y Bogotá.

En la década de los 80 en Medellín, Manizales, algunos barrios de Bogotá y posteriormente la costa atlántica, comenzaron a utilizarse equipos solares térmicos de forma masiva; lo que obligó a la reglamentación de su uso a través del INCOTEC (Instituto Colombiano de Normas Técnicas).

En marzo de 1993 se promulgó la NTC 3507, referida a instalación de sistemas domésticos de agua caliente que funcionan con energía solar.

A mediados de la década de los 90, con el apoyo de fundaciones como Gaviotas, el uso de equipos solares térmicos se extendió a hospitales y centros comunitarios.

Hasta 1996 se habían instalado 48.901 m² de sistemas solares térmicos, principalmente en barrios de Medellín y Bogotá con financiación del Banco Central Hipotecario.

Todo este desarrollo se paró en seco con la introducción de una fuente energética más barata, el gas natural, que desplazó del mercado esta naciente industria desde entonces hasta la actualidad.

La mayoría de los sistemas funcionaban bien pero algunos usuarios tenían otras expectativas respecto de ellos, lo que ha dado a entender que la demanda es superior a la capacidad de los mismos.

Actualmente, la industria solar térmica de Colombia sigue deprimida a la espera de una nueva crisis de energía.

El único programa que contempló tímidamente la incorporación de energía solar térmica se inició en 2009 en San Andrés como parte del plan de Implementación de energía solar en edificaciones para evaluar su comportamiento en instalaciones residenciales.

La acción estatal debería orientarse hacia el desarrollo de la energía solar térmica para:

– Diversificar la matriz energética nacional y dar flexibilidad al sistema de suministro de energía

– Disminuir el impacto ambiental del uso de combustibles fósiles y el agotamiento de sus reservas

– Facilitar el suministro de energía en zonas remotas y aisladas

La política energética nacional debería tender hacia un aumento gradual del suministro en base a energía solar térmica, elaborándose para ello una estrategia de desarrollo que fije metas ambiciosas y realizables, acordes con una política de reducción de emisiones de gases de efecto invernadero.

La Ley URE (Uso Racional de Energía) y el Decreto 3683, no han resultado suficientes para la promoción de esta fuente de energía, como demuestran los resultados obtenidos desde su promulgación.

Solar Térmica Chile

En Chile la energía entendida como negocio ha provocado que la solar térmica para aplicaciones domésticas no sea subvencionada, manteniendo el apoyo a los hidrocarburos.

Es más fácil impulsar el alza de precios en las tarifas eléctricas residenciales, que no pueden acceder a contratos directos y se ven sometidas al sistema pool de generación con intermediarios.

El presupuesto 2014 dejó afuera los subsidios de infraestructura solar para viviendas sociales, a pesar de que se planteó la necesidad de prorrogar la Ley 20.365 y que esto fuese incluido en el presupuesto.

Como la ley no fue prorrogada, unos 2 millones de chilenos se quedaron sin la posibilidad de contar con agua caliente gratis en sus viviendas y la industria solar térmica volvió a fojas 0 después de un gran auge.

La Ley 20.365 buscaba crear un mercado natural que hiciera innecesario el subsidio tras 5 años, pero como sólo duró 2 años, no cumplió con ese objetivo.

El pasado martes 12 de enero de 2016 el proyecto que extiende la ley 20.365 y crea un subsidio directo para sistemas solares térmicos en viviendas sociales superó su último trámite en las dos cámaras del Congreso. Ahora sólo falta que la ley sea publicada en el Diario Oficial para que entre en vigencia.

Para la industria solar térmica ha sido demasiado extenso el tiempo de espera de esta ley.

Se diluirán nuevamente los efectos de esta extensión si no se adoptan políticas permanentes a favor de mantener los incentivos a la energía solar térmica por parte de particulares y empresas.

No solamente es importante el desarrollo de la energía solar térmica en el sector residencial. La minería de cobre, lácteos, vinos, hormigón, panaderías, aserraderos y papeleras presentan también oportunidades de incorporación de energía solar térmica.

La mayoría de industrias identificadas con potencial para incorporar energía solar térmica se encuentran en la RM, por la concentración de plantas industriales.

Las oportunidades de implementación en la VIII región son escasas porque la energía solar térmica actualmente no es competitiva con el uso de biomasa, combustible abundante en esta región.

Existen razones de peso para fomentar el desarrollo de sistemas solares térmicos:

* Es clave para los inmuebles que quieran obtener el «Sello Energético para Viviendas»

* Se estima que en cada vivienda que se instale un equipo solar térmico se dejarán de producir 16 toneladas de CO2 durante su vida útil

* El desarrollo de capacidades y empresas y el desarrollo tecnológico del sector

* Cada peso que el estado invierte tiene una elevada rentabilidad social