Archivo de la etiqueta: energia solar fotovoltaica

DIMENSIONADO DE SISTEMAS FV AISLADOS

Los sistemas fotovoltaicos autónomos o aislados no necesitan de una conexión con una red eléctrica y su funcionamiento es independiente o autónomo de dicha red.

Las aplicaciones que más se están implementando actualmente son pequeñas instalaciones para iluminación de viviendas a las que no llega la red general, de bombeo, instalaciones agrícolas varias, de señalización, albergues, campings, refugios, chalets de verano y fin de semana.

El criterio que se sigue en el dimensionado de un sistema fotovoltaico aislado no es tanto el producir la máxima energía sino que aparece el concepto de fiabilidad (asegurar el buen funcionamiento del sistema procurando que los fallos sean mínimos).

Dimensionar un sistema fotovoltaico aislado requiere 7 pasos:

1. Estimación de la carga eléctrica (consumo eléctrico)

Debemos conocer la potencia de cada elemento de consumo y el tiempo de uso estimados. Normalmente el cálculo se hace utilizando W/h como unidad de energía.

Para estimar estos valores podemos consultar el siguiente enlace

Ver las imágenes de origen

2. Estimación de la energía solar disponible

Hm es la energía en kWh que incide sobre un metro cuadrado de superficie horizontal en un día medio del mes m. De la tabla correspondiente se obtiene el valor en MJ/m2 (mega julios / m2).

Hay que realizar la conversión y expresarlo en Wh/m2 ó kWh/m2. Siendo 1 MJ a 277,77 Wh ó 0,277 kWh.

Para estimar estos valores podemos consultar el siguiente enlace

Ver las imágenes de origen

3. Dimensionado de baterías

Para definir el tamaño del acumulador, se deberá establecer N (Días de autonomía). Es el número de días consecutivos que en ausencia de Sol, el sistema de acumulación es capaz de atender el consumo, sin sobrepasar la profundidad máxima de descarga de la batería.

Identificado N y conocida la energía total requerida Et (consumo final de electricidad) en un período de 24 horas vamos a calcular la energía real Er que los módulos deben aportar a la batería elegida (que tendrá una profundidad de descarga máxima admisible pd).

La energía Er diaria deberá tener en cuenta las diferentes pérdidas que existen:

Er = Et / R

Siendo R un factor global de rendimiento de la instalación, cuyo valor será:

R = 1 – [(1 – kb – kc – kv) ka . N / pd] – kb – kc – kv

kb: coeficiente de pérdidas por rendimiento en la batería. Varía entre 0,05 (si no hay descargas intensas) y 0,1 (para casos más desfavorables).
ka: coeficiente de autodescarga. Si el dato no aparece en la ficha técnica de la batería, puede estimarse en 0,005 (0,5% diario).
kc: coeficiente de pérdidas en el convertidor. Si el sistema no incorpora inversor, es cero. Oscila entre 0,2 para inversores de onda senoidal y 0,1 para inversores de onda cuadrada.
kv: coeficiente de otras pérdidas. Suele estimarse en 0,15 y en 0,05 si ya hemos considerado los rendimientos de cada aparato al calcular los consumos.

Calculado R y obtenida Er pasamos a determinar la capacidad útil Cu de la batería. La batería debe ser capaz de acumular la energía a suministrar a lo largo de ese período:

Cu = Er . N

Para pasar de Wh a Ah, dividiremos Cu entre la tensión nominal de la batería (generalmente 12 V o 24 V).

Ahora calculamos la capacidad nominal máxima C asignada por el fabricante de la batería. Estas capacidades serán asignadas para temperaturas entre 20º y 25º C.

C = Cu / pd

Con estos datos se seleccionará, entre las baterías que se ofrecen en el mercado, la que más se aproxime a la capacidad nominal C obtenida.

Para estimar estos valores podemos consultar el siguiente enlace

Ver las imágenes de origen

4. Dimensionado de la superficie de captación

La energía originada en los módulos que debe llegar al acumulador (Er) sufre pérdidas originadas por el regulador que se estiman en aproximadamente el 10%; por lo tanto la cantidad diaria de energía a producir por los módulos Ep es:

Ep = Er / 0,9

A partir de la siguiente fórmula calcularemos las HSP (horas de sol pico u horas de sol a una intensidad de 1000 W/m2), partiendo de H expresada en MJ (1 kWh= 3,6 MJ):

HSP = 1 / 3,6 k . H (MJ) = 0,2778 k . H

k es el factor de corrección por inclinación de los módulos de acuerdo con la latitud de la localización de la instalación.
H es la radiación media diaria de cada mes expresada en MJ/m2.

Para acceder a estos valores podemos consultar el siguiente enlace

Como ya hemos dicho, debemos basarnos en el mes más desfavorable y además corregir de acuerdo con los factores climatológicos de la zona (atmósfera limpia o zona de montaña = 1,05; zona con polución = 0,95; zona con nieblas = 0,92).

La orientación idónea es siempre hacia el ecuador y para determinar la inclinación podemos seguir las recomendaciones del post Estructura soporte.

Para calcular el número de módulos usaremos la siguiente fórmula:

NM = Ep / 0,9 . Pp . HSP

Pp es la potencia nominal (pico) de los módulos elegidos. Se seleccionará la combinación de módulos más adecuada para la instalación (precio, espacio disponible, carga a satisfacer, etc.).

Se multiplica por 0,9 para considerar las posibles pérdidas adicionales que pueden provocar la suciedad de los módulos, reflexión, etc..

Si el resultado no es un número entero, se redondeará a la unidad superior si el decimal es igual o mayor a 0,5 e inferior si es menor de 0,5.

Conociendo el número de total de paneles del generador fotovoltaico y la tensión nominal de la batería, que coincide con la tensión nominal de la instalación, se puede determinar si es necesario agrupar los módulos en serie y en paralelo. El número de módulos que habrá que conectar en serie, se calcula así:

Ns = VBat / Vm

Donde:
Ns número de módulos en serie por rama
VBat tensión nominal de la batería (V)
Vm tensión nominal de los módulos (V)

Y el número de ramas en paralelo a conectar para suministrar la potencia necesaria, viene dado por:

Np = NM / Ns

Siendo Np el número de módulos a conectar en ramas paralelo.

Ver las imágenes de origen

5. Especificar el controlador o regulador

Para el dimensionado podemos consultar el post Regulador de carga solar.

Se dimensionará la instalación, de tal forma que el factor de seguridad se corresponda con un 10% como mínimo entre la potencia máxima producida y la del regulador. Se utilizará el mínimo número posible de reguladores.

Para hallar el número de reguladores Nr utilizaremos la siguiente ecuación:

Nr = Npp . ip / ir

Siendo:
Npp el número de módulos en paralelo.
ip la intensidad pico del módulo seleccionado.
ir la intensidad máxima que es capaz de disipar el regulador.

Ver las imágenes de origen

6. Dimensionado del inversor

A la hora de dimensionar el inversor se tendrá en cuenta la potencia que demanda la carga compuesta por dispositivos de CA, de forma que se elegirá un inversor cuya potencia nominal sea apenas superior a la máxima demandada por la carga.

Si el sistema cuenta con dispositivos de CA podemos consultar el post Convertidor solar para dimensionarlo.

Ver las imágenes de origen

7. Elección de la sección de los cables

Para seleccionar la sección de cables se tendrán en cuenta las recomendaciones del post Cableado solar.

El dimensionado del cableado constituye una de las tareas en las que se deberá prestar especial atención, ya que siempre que exista consumo habrá pérdidas debido a las caídas de tensión en los cables.

Ver las imágenes de origen

Este es un extracto de los contenidos incluidos en el Manual Técnico-Comercial de Energía Solar Fotovoltaica y en la formación e-learning de Sopelia.

Todo lo que necesitas es Sol. Todo lo que necesitas es Sopelia.

Solar FV Panamá

Los compromisos que adquirió Panamá en los Acuerdos de París están contenidos en lo que se conoce como las Contribuciones Nacionales Determinadas.

Se trata de compromisos éticos, no mandatorios, que no implican sanciones por incumplimiento.

Los compromisos de la República de Panamá en tal sentido son los de generar en el 2050 el 30% de la electricidad con fuentes renovables nuevas (solar y eólica).

Es importante diferenciar entre potencia instalada y generación efectiva.

En 2017, mientras la capacidad solar y eólica alcanzaba casi un 12%, su generación representaba sólo un 6%.

Actualmente Panamá cuenta con una capacidad instalada de 270 MW de eólica, 194 MW de parques solares, y 35 MW de solar en condición de autoconsumo.

La penetración de la energía solar sigue siendo escasa. Hacia finales de 2019 solamente representaba un 2% del total de su matriz de generación.

En el primer trimestre de 2020 la generación total fue de 2.842.636 kWh; de ellos 256.638 kWh procedieron de la eólica, es decir un 9 %, mientras que los 91.293 kWh de la fotovoltaica significaron el 3,2 %.

Si a esto se le añade los 1.181.553 kWh contabilizados por la hidráulica (el 41,5 %), se obtiene que las energías no basadas en combustibles fósiles representaron durante el primer trimestre de 2020 el 53,7 %.

Respecto del mismo periodo de 2019, el total de las renovables aumento su generación en un 18%.

Con una inversión de unos 160 millones de dólares la Planta Solar Fotovoltaica Penonomé de 150 MW es considerada la instalación solar más grande de Centroamérica.

Panamá será pionera en la implementación de un moderno sistema de energía solar denominado «Maverick».

Se trata de una revolucionaria solución solar pre- fabricada y pre-cableada, que se pliega, se envía al sitio y luego, se despliega. Es una de las formas más sencillas y rápidas de agregar recursos solares, usando menos extensiones de terreno.

Panamá, será uno de los primeros países donde se implementará esta tecnología en un proyecto fast track de 2 MW.

La innovadora solución permite a los clientes instalar proyectos solares a un ritmo tres veces más rápido, mientras suministra hasta dos veces más energía utilizando el mismo terreno que las instalaciones solares tradicionales.

Los módulos pre-fabricados se despliegan desde un vehículo en movimiento que las va colocando en un área determinada.

5B plans module pre-fab facility in Adelaide, "gigafactory" in Asia | RenewEconomy

Las grandes empresas locales han mostrado un creciente interés en el uso de la energía solar para su suministro eléctrico dado el cambio de mentalidad de los panameños quienes se están mostrando preocupados por el cambio climático y de allí ya se haya logrado la firma de varios acuerdos de venta de energía (PPAs) con grandes clientes a largo plazo por al menos 22 años.

Como en la mayoría de los países, se apuesta por la centralización y los proyectos a gran escala y no por empoderar a los usuarios y democratizar la energía.

Se debería impulsar el papel del prosumidor y desarrollar políticas de generación distribuida.

La Oficina para América Latina y el Caribe del Programa de la ONU para el Medio Ambiente (PNUMA) junto con la Agencia Española de Cooperación Internacional para el Desarrollo (AECID) lanzaron la iniciativa Generación SOLE, que busca promover modelos innovadores de financiación para el despliegue de la generación solar fotovoltaica distribuida en la región con acciones inmediatas en Panamá.

La iniciativa Generación SOLE busca fortalecer las capacidades de la banca comercial para crear opciones de financiamiento dirigidas al consumidor final, ya sea residencial, comercial o industrial. La iniciativa se propone favorecer un crecimiento disruptivo del mercado de la generación solar.

Todo lo que necesitas es Sol. Todo lo que necesitas es Sopelia.

Dimensionado de un Sistema Fotovoltaico Conectado a Red

Hay dos modalidades de conexión a red:

– El usuario sigue comprando la electricidad que consume a la distribuidora al precio establecido y además es propietario de una instalación generadora de electricidad que puede facturar los kWh producidos a un precio superior.

– En el Autoconsumo o “Net Metering” el sistema podrá inyectar energía en la red cuando su producción supere al autoconsumo, y extraer energía de ella en caso contrario.

Una instalación de 1,5 kWp ocupa unos de 22 m2 de cubierta (12 m2 de superficie neta de módulos) y volcará a la red tanta energía como la consumida por una pequeña vivienda a lo largo del año.

COMO CONECTAR PANELES SOLARES A SU PROYECTO SOLAR

La estimación de la energía producida por un sistema fotovoltaico conectado a red que realizaremos es una predicción simple que consiste en la mera multiplicación de un valor de irradiación por otro de potencia pico que suele conducir a estimaciones alejadas del comportamiento real del sistema.

Una aproximación a cálculos más exactos debería contemplar distintos factores que influyen en el proceso de generación de energía útil (emplazamiento del generador fotovoltaico, variaciones de temperatura, sombras, potencia máxima disponible, fenómenos de segundo orden, características del inversor, etc.).

Cualquiera sea el procedimiento adoptado deberíamos intentar conjugar sencillez con precisión.

A la hora de calcular un sistema fotovoltaico conectado a red se deben tener en cuenta los siguientes condicionantes:

1- Potencia nominal de la instalación (kWp)

En la práctica se establecerá en función de la superficie disponible, de la inversión a realizar y de la cantidad de energía eléctrica solar que se pretende generar.

Determinada la potencia del módulo a utilizar Wm, la multiplicamos por la cantidad de módulos a instalar Nm para obtener la potencia nominal pico de la instalación Pmp:

Wm . Nm = Pmp

2- Energía eléctrica a generar

La energía que podría ser obtenida para cada mes se puede calcular mediante la siguiente expresión:

Em = km . Hm . Pmp . PR . nm / GCEM

Donde:

Em es la producción de energía solar del mes m en kWh.

km es el factor de corrección a aplicar por inclinación de los módulos para el mes m (se puede acceder a sus valores para hemisferio norte en tablas Censolar y en http://www.cleanergysolar.com/2011/09/15/tutorial-tablas-factor-de-correccion-de-k/) de acuerdo con la latitud de la localización de la instalación.

Hm es la energía en kWh que incide sobre un metro cuadrado de superficie horizontal en un día medio del mes m. De la tabla correspondiente se obtiene el valor en MJ/m2 (mega julios / m2). Hay que realizar la conversión y expresarlo en kWh/m2.

Para obtener la radiación media diaria de cada mes expresada en MJ/m2 en cualquier lugar del mundo podemos consultar Opensolar DB.

La irradiación diaria media mensual puede también obtenerse de bases de datos de reconocido prestigio como la NASA http://eosweb.larc.nasa.gov/sse o Joint Research Center [JRC], http://sunbird.jrc.it/pvgis/pv/imaps/imaps.htm Institute for Environment and Sustainable Renewable Energies, Ispra (Italy).

Para realizar la conversión de MJ a Wh ó kWh nos valemos de la siguiente equivalencia:

1 MJ = 106 J = 0,277 kWh = 277,77 Wh

Pmp es la potencia pico del campo generador expresada en Kwp.

PR es el factor de rendimiento energético de la instalación o performance ratio definido como la eficiencia de la instalación en condiciones reales de trabajo. En la práctica se suele tomar PR = 0,8

nm es el número de días del mes considerado.

GCEM = 1kW/m2 CEM significa Condiciones Estándar de Medida utilizadas universalmente para caracterizar generadores solares, que como ya hemos visto equivalen a: Irradiancia solar: 1000 W/m2; Distribución espectral: AM 1,5 G; Temperatura de célula: 25 °C.

Sistema solar fuera de la red o conectado? Diferencias, ventajas y desventajas

La estimación de la energía inyectada anualmente a la red se obtendrá sumando los valores de energía Em de cada uno de los doce meses del año.

El elemento clave en un sistema conectado a red es el inversor, que se encarga de que el acoplamiento circuito de módulos-red sea perfecto, seguro y eficiente.

Este contenido fue extraído del Manual Técnico Comercial de Energía Solar Fotovoltaica y forma parte del e-learning Solar.

Todo lo que necesitas es Sol. Todo lo que necesitas es Sopelia.

Sistemas FV

El acoplamiento de dos o más módulos en serie produce un voltaje igual a la suma de los voltajes individuales de cada módulo, manteniéndose invariable la intensidad.

En la conexión en paralelo, es la intensidad la que aumenta permaneciendo igual el voltaje.

Lo más habitual es seleccionar módulos del voltaje deseado (los de 12 V son los más utilizados) y combinarlos en paralelo de manera que la intensidad total (y por ende la potencia resultante) sea la necesaria para satisfacer la demanda eléctrica.

Los módulos que se interconectan deben tener la misma curva i-V para evitar descompensaciones.

Si en un grupo de módulos conectados en serie falla uno de ellos (por avería o sombra), este módulo se convierte en una carga resistiva que dificultará o impedirá el paso de la corriente generada por los demás módulos de la serie. El módulo en cuestión podría averiarse totalmente.

Para prevenir esta situación, los módulos conectados en serie se dotan de un diodo by pass o de derivación, conectado en paralelo entre sus terminales. Este elemento brinda un camino alternativo a la corriente generada por los demás módulos de la serie.

Existen diferentes tipos de configuraciones que responden a las características de la instalación y sobre todo al tipo de carga. A continuación se detallan las más habituales:

• Módulos directamente conectados a una carga
Es el sistema más simple. El generador fotovoltaico se conecta directamente a la carga, normalmente un motor de corriente continua. Se utiliza por ejemplo en bombeo de agua. Al no existir baterías ni componentes electrónicos aumenta la confiabilidad pero resulta difícil mantener una performance eficiente a lo largo del día.

Ver las imágenes de origen

• Módulos y batería
Se puede utilizar esta configuración para reponer la autodescarga de una batería o en sistemas de electrificación rural de pequeña potencia. Suelen utilizarse uno o dos módulos conectados en paralelo para lograr la potencia deseada.

Ver las imágenes de origen

• Módulos, batería y regulador
En esta configuración se conecta el generador fotovoltaico a una batería a través de un regulador para que esta no se sobrecargue o alcance una profundidad de descarga no deseada. Las baterías alimentan cargas en corriente continua.

Ver las imágenes de origen

• Módulos, batería, regulador e inversor
Cuando se necesite energía en corriente alterna se incorporará al esquema de la configuración anterior un inversor. La potencia generada en el sistema fotovoltaico podrá ser transformada íntegramente en CA o podrán alimentarse simultáneamente cargas de CC y de CA.

Ver las imágenes de origen

• Sistemas conectados a red
Los sistemas fotovoltaicos conectados a red están compuestos por un generador fotovoltaico que se encuentra conectado a la red eléctrica convencional a través de un inversor.

Ver las imágenes de origen

Pueden darse dos casos:

– El sistema inyecta energía en la red cuando su producción supera al autoconsumo, y extrae energía de ella en caso contrario.
– El sistema solo inyecta energía en la red.

La diferencia fundamental entre un sistema fotovoltaico aislado y los conectados a red consiste en la ausencia, en estos últimos, de la batería y la regulación de carga.

El inversor, en los sistemas conectados a red, deberá estar en fase con la tensión de red.

A continuación se detallan algunos ejemplos de instalación fotovoltaica:

– Centrales conectadas a red con subvención a la producción.
– Estaciones repetidoras de microondas y de radio.
– Electrificación de pueblos en áreas remotas (electrificación rural).
– Instalaciones médicas en áreas rurales.
– Corriente eléctrica para casas de campo.
– Sistemas de comunicación de emergencia.
– Sistemas de vigilancia de datos ambientales y de calidad del agua.
– Faros, boyas y balizas de navegación marítima.
– Bombeo para sistemas de riego, agua potable en áreas rurales y abrevaderos para el ganado.
– Balizamiento para protección aeronáutica.
– Sistemas de protección catódica.
– Sistemas de desalinización.
– Vehículos de recreo.
– Señalización ferroviaria.
– Sistemas para cargar los acumuladores de barcos.
– Energía para naves espaciales.
– Postes SOS (teléfonos de emergencia de carretera).
– Parquímetros.
– Recarga de scooters y vehículos eléctricos.

Este contenido fue extraído del Manual Técnico Comercial de Energía Solar Fotovoltaica y forma parte del e-learning Solar.

Todo lo que necesitas es Sol. Todo lo que necesitas es Sopelia.

Sistemas De Seguimiento Solar

Para aprovechar la mayor cantidad posible de energía solar, la superficie de captación debe ser siempre perpendicular a los rayos solares y esto sólo puede conseguirse si los módulos están dotados de un mecanismo de seguimiento solar.

Utilizando estos mecanismos, la energía total recibida en un día puede ser hasta un 35% superior si la comparamos con la recibida por un módulo estático.
Esta diferencia de rendimiento se ve reducida en los casos de frecuentes días nublados y en todas aquellas condiciones climatológicas en las que la relación entre la energía recibida por radiación directa y la recibida por radiación difusa tienda a disminuir. Por eso solamente es recomendable su utilización en zonas de poca nubosidad.

Hay que realizar un detallado análisis para verificar que el aumento de rendimiento conseguido compensa sobradamente el consumo de energía y el coste y mantenimiento de los mecanismos de seguimiento.

Los dos tipos de movimiento son:

1. De 1 solo eje: solo permite el giro en torno a un eje horizontal, vertical o inclinado. Se puede realizar el seguimiento del azimut o de la altura del sol, pero no de ambos a la vez.

Ver las imágenes de origen

2. De 2 ejes: además del movimiento de giro este-oeste también es posible un segundo movimiento rotatorio sobre un eje horizontal variando el ángulo del módulo respecto del plano horizontal. Pueden ser monoposte (un único apoyo central) o carrousel (varios apoyos distribuidos a lo largo de una superficie circular).

Ver las imágenes de origen

Podemos encontrar distintos sistemas de seguimiento solar. Los más usuales son:

1. Sistemas pasivos de seguimiento: estos dispositivos no utilizan electricidad ni tienen motor. Hay dos patentes norteamericanas. La primera (Robbins Engineering) se basa en la presión de expansión y contracción de gas freón contenido en dos cilindros situados a cada lado de la estructura. La segunda (Zomeworks) es un sistema por gravedad basado en la variación del peso de un fluido contenido en un recipiente que al evaporarse pasa a otro.

2. Seguimiento por sensores: el sensor es el elemento que permite la detección y medida de la falta de direccionamiento entre el vector sol y la normal a la superficie de captación. El sensor suele estar constituido por pares de elementos fotosensibles montados sobre el módulo y moviéndose solidariamente con él.
Los fotosensores se valen de la radiación solar directa para detectar la posición del sol. La imposibilidad del seguimiento cuando se producen ocultamientos del sol y la necesidad de emplear un tiempo en la recuperación del direccionamiento cuando el sol reaparece son características inherentes a todos los sistemas de seguimiento basados en fotosensores.
La desviación detectada por los fotosensores transmite una señal de actuación que controla el funcionamiento de los motores para conseguir el movimiento del módulo. Se suelen emplear motores de velocidad constante que funcionan de manera intermitente de modo que el error de direccionamiento se mantenga en una banda de tolerancia.
Los sistemas que utilizan fotosensores se emplean para sistemas pequeños y medianos.
Entre la puesta del sol de un día y el amanecer del día siguiente el módulo debe situarse en la posición de amanecer porque una vez que haya salido el sol se perdería mucho tiempo en el giro de 180º necesario para recuperar el direccionamiento. Para ello se emplea un reloj que genera la orden apropiada.

3. Seguimiento por coordenadas calculadas: este sistema sigue la posición del sol mediante el cálculo de sus coordenadas astronómicas y no precisa de la presencia física de los rayos solares. Esta circunstancia hace a los sistemas de coordenadas inmunes a los días nublados y a otras circunstancias que pueden producir errores de direccionamiento en un fotosensor, como sucede por ejemplo con los destellos.
El empleo de sistemas controlados por computador presenta la ventaja adicional de que determinados cambios pueden hacerse a nivel de software únicamente.
También se pueden incluir funciones adicionales como la de llevar los módulos a una posición de máxima seguridad ante las inclemencias del tiempo o la del retorno nocturno.

Sopelia ha desarrollado Solar Layout, la App de Android que permite obtener la inclinación, orientación y distancia entre filas de módulos fotovoltaicos en el lugar de instalación.

Este contenido fue extraído del Manual Técnico Comercial de Energía Solar Fotovoltaica y forma parte del e-learning Solar.

Todo lo que necesitas es Sol. Todo lo que necesitas es Sopelia.

Integración Arquitectónica Solar

La energía solar fotovoltaica es la que mejor se integra al entorno urbano. Por esta razón han surgido soluciones arquitectónicas que la incorporan. A continuación se enumeran algunas.

En las viviendas con techo de tejas, éstas se pueden sustituir fácilmente por tejas fotovoltaicas del mismo tipo, dado que no es necesario cambiar ni el enlatado ni los listones y la estructura de la cubierta sigue siendo la misma.

Ver las imágenes de origen

Las fachadas de aluminio integrando células fotovoltaicas son una alternativa para proyectos nuevos o de renovación de edificios.

Ver las imágenes de origen

Los módulos fotovoltaicos con transparencia junto con los perfiles de aluminio se pueden integrar fácilmente en paredes verticales, techos y coberturas. Estos módulos transparentes están disponibles en una amplia gama de aplicaciones, formas y opacidad.

Las células fotovoltaicas se encuentran incrustadas en el vidrio laminado de seguridad. Variando la posición y la densidad de la trama de vidrio, es posible ajustar la transmisión de la luz y el efecto de la sombra en el interior del edificio.

Para módulos solares opacos en muros es necesario incorporar materiales aislantes que estén detrás para proporcionar la necesaria barrera térmica. Los módulos opacos y transparentes pueden ser combinados en la misma fachada mejorando la eficiencia energética, térmica y acústica del edificio.

Ver las imágenes de origen

El sistema de fachada ventilada fotovoltaica además de producir electricidad limpia incorpora beneficios en el aislamiento térmico y acústico del edificio. La envolvente térmica puede provocar un ahorro de entre el 25-40% de la energía consumida en el edificio.

Ver las imágenes de origen

Un lucernario fotovoltaico, además de la generación fotovoltaica, aporta propiedades bioclimáticas de confort térmico en el interior del edificio debido a la cámara de aire del vidrio aislante. Además facilita una iluminación natural y evita que los rayos UV y la radiación infrarroja penetren al interior del edificio (mejorando el confort y evitando el envejecimiento prematuro de los materiales).

Ver las imágenes de origen

Una marquesina fotovoltaica constituye una solución constructiva que combina la generación de energía eléctrica con propiedades de protección solar y contra condiciones meteorológicas adversas.
La orientación, la pendiente mínima, las dimensiones o las cargas de viento y nieve son factores importantes a tener en cuenta a la hora de diseñar la estructura.

Ver las imágenes de origen

Un parking fotovoltaico consta de una estructura que además de proteger el vehículo garantiza la generación in-situ de energía para su vertido a la red, autoconsumo o el abastecimiento de las baterías de un coche eléctrico.

Ver las imágenes de origen

También ha salido al mercado el primer suelo cerámico fotovoltaico. Consta de vidrio solar fotovoltaico integrado en pavimentos elevados de cerámica, siendo éstos totalmente transitables. Puede integrarse en cualquier proyecto y ambiente sin que esto suponga renunciar al diseño ni a la estética del mismo.

Ver las imágenes de origen

Los edificios, al integrar módulos fotovoltaicos, crean un mundo de posibilidades. La gran variedad, formas, colores y estructuras de las células fotovoltaicas, vidrio y perfiles permiten un enfoque arquitectónico moderno y también un diseño innovador combinando elegancia y funcionalidad.

Sopelia ha desarrollado Solar Layout, la App de Android que permite obtener la inclinación, orientación y distancia entre filas de módulos fotovoltaicos en el lugar de instalación.

Este contenido fue extraído del Manual Técnico Comercial de Energía Solar Fotovoltaica y forma parte del e-learning Solar de Sopelia.

Todo lo que necesitas es Sol. Todo lo que necesitas es Sopelia.

Estructura Soporte Módulos Fotovoltaicos

En cuanto a la situación de los módulos fotovoltaicos existen las siguientes posibilidades generales:

Suelo: Es la forma más usual de instalación de grupos de módulos (sobre todo en huertos solares) y presenta grandes ventajas en cuanto a la resistencia al viento, accesibilidad y facilidad de montaje.

Sin embargo, es más susceptible de poder quedar enterrada por la nieve, inundarse o ser objeto de rotura por parte animales o personas.

Ver las imágenes de origen

Poste: muy utilizada en instalaciones de pequeña dimensión, si se dispone de un mástil. Es el tipo de montaje típico en la alimentación de equipos de comunicación aislados o farolas.

Ver las imágenes de origen

Pared: debe disponerse de buenos puntos de anclaje sobre una edificación construida. La accesibilidad puede presentar algunos problemas.

Ver las imágenes de origen

Tejado o cubierta: una de las más habituales porque generalmente se dispone de espacio suficiente. Presenta también problemas de cubrimiento de nieve y riesgos en la impermeabilización de las sujeciones del techo.

Ver las imágenes de origen

Si la instalación se localiza en una zona urbana, lo más habitual es colocar el módulo sobre el techo o cubierta.

En el montaje de la estructura se debe asegurar la estanqueidad de la cubierta mediante la utilización de elementos de impermeabilización.

También se debe realizar un estudio de cargas que permita determinar si la estructura o techo soportará el peso de los módulos y de la estructura soporte.

Sin embargo el principal factor a la hora de fijar la estructura es la fuerza del viento. La estructura deberá resistir vientos de, como mínimo, 150 km/h.

En terrazas o suelos la estructura deberá permitir una altura mínima del módulo de unos 30 cm. En zonas de montaña o donde se produzcan abundantes precipitaciones de nieve, deberá ser superior.

La estructura y los soportes deberán ser preferiblemente de aluminio anodizado, acero inoxidable o hierro galvanizado y la tornillería de acero inoxidable.

El aluminio anodizado es de poco peso y gran resistencia.

El acero inoxidable es apropiado para ambientes muy corrosivos y tiene mayor vida útil pero su costo es elevado.

Las estructuras de hierro galvanizado ofrecen una buena protección frente a los agentes corrosivos externos con la ventaja de que el zinc es compatible químicamente con el mortero de cal y de cemento, una vez que estos están secos.

Las estructuras vienen en kits o pueden usarse perfiles normalizados que se encuentran en el mercado y construir una estructura específica para la instalación.

Los soportes diseñados para un módulo solar determinado suelen ser más baratos que los confeccionados con el fin de poder sostener cualquier tipo de módulo. Sin embargo, seguramente serán estos últimos los que terminen desarrollándose en mayor número en un futuro cercano.

Normalmente un soporte para módulos solares tiene las siguientes características: posee una placa provista en su cara superior de unos medios de acoplamiento rápido para los módulos y de uno o más orificios para que los tornillos sean introducidos y así unir la placa al soporte. El soporte tiene también unos medios de fijación unidos a la cara inferior de la placa para su sujeción a la estructura inferior.

La orientación será siempre hacia el ecuador y se recomiendan las siguientes inclinaciones:

Instalaciones con función prioritaria en invierno (p.e.: albergue de montaña): 20º mayor que la latitud del lugar.

Instalaciones con funcionamiento uniforme a lo largo de todo el año (p.e.: electrificación de viviendas): 15º mayor que la latitud del lugar.

Instalaciones con funcionamiento prioritario en primavera y verano (p.e.: campings): igual que la latitud del lugar.

Instalaciones cuyo objetivo es producir la mayor cantidad de energía a lo largo del año (p.e.: conexión a red): 85% de la latitud del lugar.

La razón para incrementar la inclinación, respecto de la recomendada para colectores solares térmicos, se debe a que generalmente en el caso de instalaciones fotovoltaicas no se cuenta con un sistema de energía auxiliar y se hace necesario captar toda la energía posible en la época más desfavorable (invierno).

Sopelia ha desarrollado Solar Layout, la App de Android que permite obtener la inclinación, orientación y distancia entre filas de módulos fotovoltaicos en el lugar de instalación.

Este contenido fue extraído del Manual Técnico Comercial de Energía Solar Fotovoltaica y forma parte del e-learning Solar.

Todo lo que necesitas es Sol. Todo lo que necesitas es Sopelia.

Solar Fotovoltaica México

México forma parte del cinturón solar, una zona que considera a los países con mayor radiación solar en el mundo.

El país se planteó como objetivo para 2024 generar el 35% de la electricidad con energías limpias (actualmente se genera el 80% con hidrocarburos).

Se estima que la energía solar representará el 13% de toda la energía para el próximo año, y que su participación irá creciendo paulatinamente.

Sin embargo el desarrollo de la tecnología solar, como en todos los países latinoamericanos (y de casi todo el mundo); presenta un enorme desequilibrio entre proyectos a gran escala y generación distribuida.

En lo que a proyectos a gran escala se refiere, con 37 centrales solares en construcción y una inversión estimada de U$D 5,000 millones, México apunta a convertirse en una potencia solar gracias al apoyo regulatorio y unas condiciones geográficas envidiables.

En Coahuila se encuentra el parque solar más grande de Latinoamérica que con una inversión de U$D 650 millones genera cerca de 754 MW.

A finales de 2020, el país tendrá 5,000 MW de potencia instalada.

Este impulso se debe a la Reforma Energética que abrió el sector a la iniciativa privada, a la Ley de Transición Energética y a las tres subastas eléctricas celebradas hasta la fecha.

El precio promedio obtenido en la tercera subasta solar (en la que se asignaron contratos a 9 proyectos) supuso un récord mundial a la baja para todas las energías.

En el sector sobresale actualmente la presencia de actores extranjeros, que ganaron aproximadamente el 90% de las licitaciones.

La otra cara de la moneda es la de la generación distribuida.

Ver las imágenes de origen

Si bien desde 2007 es posible instalar paneles solares en hogares, comercios e industrias y conectarlos a la red eléctrica; hasta 2017 no se crearon las condiciones necesarias para el desarrollo de la generación distribuida. Ésta representa menos del 0,3% del total de la generación eléctrica en México.

Antes de la Reforma Energética la generación distribuida solo podía destinarse al autoconsumo (y los excedentes se perdían a los 12 meses), sin que fuera posible comprar o vender energía solar fotovoltaica.

La normativa aprobada en marzo de 2017 reglamenta los siguientes modelos de contraprestación: 1) Medición neta de energía (net metering); 2) Facturación neta (net billing); 3) Venta total.

También por desconocimiento se desaprovechan en México las ventajas del uso de energía solar, que podría abastecer un hogar con alto consumo de electricidad, con tan sólo 16 metros cuadrados de paneles fotovoltaicos.

La mayoría de las personas desconocen que instalar en sus hogares un sistema con tecnología renovable, basada en paneles solares, es legal, sencillo y accesible,

Otro de los retos a enfrentar es la falta de personal capacitado tanto a nivel técnico, para instalar los paneles, como de ingeniería, para el diseño de los sistemas.

Apostar solamente por los proyectos a gran escala es una propuesta absurda y sin lógica que convierte a las renovables en un producto financiero y no en una herramienta de política energética que promueva el empleo y el desarrollo tecnológico e industrial a nivel nacional.

Favorece a los macro proyectos y profundiza la concentración del sector energético.

La concentración por precios bajos en las subastas, con la consecuente creación de una posición dominante en pocos actores (generalmente empresas extranjeras), a largo plazo diluirá las ventajas de los precios bajos de corto plazo.

Si consideramos a las subastas como la única herramienta para incrementar la participación de las renovables estaremos manteniendo un paradigma de matriz energética obsoleto y cometiendo un gravísimo error.

La matriz energética del futuro se basa en 3 pilares:

1) Eficiencia energética

2) Energías renovables

3) Generación distribuida

La senda de la revolución energética y el empoderamiento ciudadano pasa por el desarrollo de la figura del prosumidor y del cooperativismo energético.

La vía de la concentración y de la centralización implica solo cambiar fósiles por renovables para mantener el “statu quo” en beneficio de los de siempre, que seguirán actuando como organismo de recaudación en connivencia con el poder político de turno.

Todo lo que necesitas es Sol. Todo lo que necesitas es Sopelia.

Cableado Solar

Los cables, tanto de corriente continua (CC) como de corriente alterna (CA), si son correctamente dimensionados minimizarán las pérdidas energéticas y protegerán la instalación.

Para un sistema fotovoltaico los cables de CC deben cumplir una serie de requisitos:

* Contar con protección contra cortocircuito y línea de puesta a tierra.
* Ser resistentes a los rayos UV y a las condiciones meteorológicas adversas con un gran rango de temperaturas (aproximadamente entre -40ºC y 110ºC).
* Poseer un amplio rango de tensión (más de 2000 V).
* Ser de manipulación fácil y simple.
* Ser no inflamables, de bajo nivel tóxico en caso de incendio y sin halógenos.
* Poseer una pérdida de conducción muy escasa (hasta un 1%).

Los cables para una instalación fotovoltaica deben tener ciertas características que los diferencian de los cables convencionales a pesar de que muchos sostienen que las diferencias no son muy grandes.

Como el voltaje en un sistema fotovoltaico es voltaje CC bajo, 12 o 24 V, las corrientes que fluirán a través de los cables son mucho más altas que las de los sistemas con voltaje CA de 110 o 220 V.

La cantidad de potencia en Watts producida por la batería o panel fotovoltaico está dada por la siguiente fórmula: P = V . I

V = tensión en Voltios
I = corriente en Amperios

Esto significa que para suministrar una potencia a 12 V la corriente será casi 20 veces más alta que en un sistema de 220 V. Implica que deben unirse cables mucho más gruesos para impedir el recalentamiento o incluso un incendio.

La siguiente tabla indica la sección de cable recomendada de acuerdo con la potencia y para distintos niveles de tensión.

Se observa que para voltajes bajos y bajas demandas de potencia deben utilizarse cables muy gruesos.

Por ejemplo, para alcanzar una potencia de aproximadamente 1 Kw a 12 V necesitaríamos un cable de 25 mm2 de sección. El mismo que para suministrar 20 Kw a 220 V. Esto aumenta el precio del sistema drásticamente debido a que los cables más gruesos son más costosos.

Por eso es muy importante que los tramos de cableado de CC sean lo más cortos posibles.

Cuando se diseñan sistemas grandes, debe realizarse un análisis de costo/performance para elegir el voltaje operativo más adecuado. Sería recomendable reunir pequeños grupos de módulos y de ser posible hacer el voltaje de operación más alto que 12 ó 24 V.

Para verificar los valores de sección de cable recomendados en tablas, las máximas caídas de tensión comparadas con la tensión a la que se esté trabajando deberían estar por debajo del límite del 3% / 5%.

Para calcular la relación entre la sección del conductor y su longitud podemos aplicar la siguiente fórmula:

S = 2 . r . l . i / ΔV

Siendo:

r Resistividad del material conductor (0,018 en el caso de conductores de cobre)
l Longitud del tramo de cable
i Intensidad de la corriente
ΔV Diferencia de lectura del voltímetro

Veamos un ejemplo:

La tensión a la salida de los bornes de una batería es de 13,1 V. La línea principal entre ésta y un dispositivo, que consume 60 W, mide 12 m de cable de 6 mm2.

Debemos encontrar el valor de tensión a la entrada del dispositivo para verificar que nos encontramos dentro de los valores máximos recomendados de caída de tensión.

La intensidad i = P / V = 60 / 13,1 = 4,6 A

S = 6 = 2 . 0,018 . 12 . 4,6 / ΔV

ΔV = 0,33 V

Por lo tanto la tensión a la entrada del dispositivo valdrá: 13,1 – 0,33 = 12,8 V

La caída de tensión es del 2,34% (valor máximo recomendado: 3%).

Lo normal es recurrir a tablas para seleccionar la sección recomendada y utilizar la fórmula para calcular la caída de tensión y realizar la verificación.

En caso de que se superen los valores máximos recomendados de caída de tensión seleccionaremos la sección inmediatamente superior y realizaremos nuevamente la verificación.Los cables para aplicaciones fotovoltaicas tienen una designación, según normativa, que está compuesta por un conjunto de letras y números, cada uno con un significado.

La designación de los cables alude a una serie de características (materiales de construcción, tensiones nominales, etc.) que facilitan la selección del más adecuado a la necesidad o aplicación.

Este es un extracto de los contenidos incluidos en el Manual Técnico-Comercial de Energía Solar Fotovoltaica y en la formación e-learning de Sopelia.

Todo lo que necesitas es Sol. Todo lo que necesitas es Sopelia.

El Convertidor Solar

Son equipos capaces de alterar la tensión y características de la corriente eléctrica que reciben para transformarla en apta para usos específicos.

Los que reciben corriente continua y la transforman en corriente continua con un voltaje diferente se llaman convertidores CC-CC. No son muy utilizados en instalaciones fotovoltaicas.

Los que reciben corriente continua y la transforman en alterna se llaman convertidores CC-CA o inversores. La función de un inversor es cambiar un voltaje de entrada de corriente continua a un voltaje simétrico de salida de corriente alterna, con la magnitud y frecuencia deseada por el usuario o proyectista.

Permiten transformar la corriente continua de 12V o 24V que producen los módulos y almacenan las baterías, en corriente alterna de 125V o 220V.

Esto posibilita el uso de artefactos eléctricos diseñados para funcionar con CA.

Un inversor simple consta de un oscilador que controla a un transistor, el cual es utilizado para interrumpir la corriente entrante y generar una onda cuadrada. Esta onda cuadrada alimenta a un transformador que suaviza su forma, haciéndola parecer una onda más senoidal y produciendo el voltaje de salida necesario.

Ver las imágenes de origen

Las formas de onda de salida del voltaje de un inversor ideal deberían ser sinusoidales.

Esto da origen a diferentes tipos de inversores:

1) Inversores de onda cuadrada: son más baratos, pero menos eficientes. Producen demasiados armónicos que generan interferencias (ruidos). No son aptos para motores de inducción.

Recomendable si se desea corriente alterna únicamente para alimentar un televisor, una computadora o un aparato eléctrico pequeño. La potencia de éste dependerá de la potencia nominal del aparato (para un TV de 19″ es suficiente un inversor de 200 W).

Ver las imágenes de origen

2) Inversores de onda senoidal modificada: son más sofisticados y caros. Utilizan técnicas de modulación de ancho de impulso.

El ancho de la onda es modificada para acercarla lo más posible a una onda senoidal. El contenido de armónicos es menor que en la onda cuadrada.

Son los que mejor relación calidad/precio ofrecen para la conexión de iluminación, televisión o variadores de frecuencia.

Ver las imágenes de origen

3) Inversores de onda senoidal pura: con una electrónica más elaborada se puede conseguir una onda senoidal pura.

Hasta hace poco tiempo estos inversores eran grandes, caros y poco eficientes; pero últimamente se han desarrollado equipos con una eficiencia del 90% o más, telecontrol, conteo de energía consumida y selección de batería.

Ver las imágenes de origen

Puesto que sólo los motores de inducción y los más sofisticados aparatos o cargas requieren una forma de onda senoidal pura, normalmente es preferible utilizar inversores de onda senoidal modificada; que son más baratos.

Los inversores deben dimensionarse a partir de dos variables.

La primera es considerando los Watios de potencia eléctrica que el inversor puede suministrar durante su funcionamiento normal de forma continua.

Los inversores son menos eficientes cuando se utilizan a un porcentaje bajo de su capacidad. Por esta razón no es conveniente sobredimensionarlos y deben ser elegidos con una potencia lo más cercana posible a la de la carga de consumo.

La segunda es la potencia de arranque.

Algunos inversores pueden suministrar más de su capacidad nominal durante períodos cortos de tiempo. Esta capacidad es importante cuando se utilizan motores u otras cargas que requieren de 2 a 7 veces más potencia para arrancar que para permanecer en marcha una vez que han arrancado (motores de inducción, lámparas de gran potencia).

Incorporar un inversor no es siempre la mejor opción desde el punto de vista de eficiencia energética. Puede parecer una solución fácil para convertir toda la salida del sistema solar a una potencia en CA estándar pero tiene varias desventajas.

La primera es que aumenta el costo y complejidad del sistema.

Un inversor también consume energía (además del 15% por pérdidas de rendimiento) y por tanto disminuye la eficiencia general del sistema.

Para la electrificación de una pequeña vivienda (puntos de luz, TV y un pequeño aparato) es posible y rentable prescindir del inversor.

Para el alumbrado es mejor invertir en luces de bajo voltaje en lugar de invertir en un inversor.

Puede ser interesante el tendido de 2 líneas: una conectada a las baterías para alimentar los puntos de iluminación de bajo consumo o LED y los aparatos que consuman CC y otra conectada al inversor para alimentar los electrodomésticos que consuman AC.

La ventaja del inversor es que el voltaje de operación es mucho más alto y por tanto puede evitarse el uso de cables gruesos. Especialmente cuando el cableado sea sumamente largo podría ser económicamente viable utilizar un inversor.

Una prestación que incorporan los convertidores más modernos es la posibilidad de funcionar como cargadores de baterías, tomando corriente alterna de un grupo electrógeno o de la red.

Este es un extracto de los contenidos incluidos en el Manual Técnico-Comercial de Energía Solar Fotovoltaica y en la formación e-learning de Sopelia.

Todo lo que necesitas es Sol. Todo lo que necesitas es Sopelia.